Absolute Value Equations 2

harpazo

Pure Mathematics
Banned
Mar 20, 2018
5,788
361
83
NYC
Let's go back to high school together as we explore the world of absolute value equations. Ready to have fun with math?

sDraw_2018-07-01_13-40-10.png
 

TheJason

Administrator
Staff member
Administrator
Moderator
Jan 25, 2018
2,507
545
113
jasonyankee.info
\(\displaystyle | x - 10| = 100 \)

\(\displaystyle (x - 10) = 100 \)

\(\displaystyle x - 10 = 100 \)

\(\displaystyle x - 10 + 10 = 100 + 10\)

\(\displaystyle x = 110\)

Check

\(\displaystyle |(110) - 10| = 100\)

\(\displaystyle |100| = 100\)

Negative side:

\(\displaystyle | x - 10| = 100 \)

\(\displaystyle -(x - 10) = 100 \)

\(\displaystyle -x + 10 = 100 \)

\(\displaystyle -x + 10 - 10 = 100 - 10 \)

\(\displaystyle -x = 90\)

\(\displaystyle \dfrac{x}{-1} = \dfrac{90}{-1}\)

\(\displaystyle x = -90\)

Check

\(\displaystyle |(-90) - 10| = 100\)

\(\displaystyle |-100| = 100\)

Two solutions of \(\displaystyle 110,-90\)
 
  • Like
Reactions: harpazo

harpazo

Pure Mathematics
Banned
Mar 20, 2018
5,788
361
83
NYC
\(\displaystyle | x - 10| = 100 \)

\(\displaystyle (x - 10) = 100 \)

\(\displaystyle x - 10 = 100 \)

\(\displaystyle x - 10 + 10 = 100 + 10\)

\(\displaystyle x = 110\)

Check

\(\displaystyle |(110) - 10| = 100\)

\(\displaystyle |100| = 100\)

Negative side:

\(\displaystyle | x - 10| = 100 \)

\(\displaystyle -(x - 10) = 100 \)

\(\displaystyle -x + 10 = 100 \)

\(\displaystyle -x + 10 - 10 = 100 - 10 \)

\(\displaystyle -x = 90\)

\(\displaystyle \dfrac{x}{-1} = \dfrac{90}{-1}\)

\(\displaystyle x = -90\)

Check

\(\displaystyle |(-90) - 10| = 100\)

\(\displaystyle |-100| = 100\)

Two solutions of \(\displaystyle 110,-90\)
Hope you like your journey back to Algebra 1.