- Thread starter harpazo
- Start date

The volume \(V\) of the patio, in cubic feet, is:

\(\displaystyle V=w\ell\frac{1}{3}\)

We are told:

\(\displaystyle \ell=2w\)

Hence:

\(\displaystyle V=w(2w)\frac{1}{3}=\frac{2w^2}{3}\)

Ad we know:

\(\displaystyle V=8\cdot27\)

Thus:

\(\displaystyle \frac{2w^2}{3}=8\cdot27\)

Solve for \(w\).

\(\displaystyle V=w\ell\frac{1}{3}\)

We are told:

\(\displaystyle \ell=2w\)

Hence:

\(\displaystyle V=w(2w)\frac{1}{3}=\frac{2w^2}{3}\)

Ad we know:

\(\displaystyle V=8\cdot27\)

Thus:

\(\displaystyle \frac{2w^2}{3}=8\cdot27\)

Solve for \(w\).

Likes:
anemone and harpazo

The volume \(V\) of the patio, in cubic feet, is:

\(\displaystyle V=w\ell\frac{1}{3}\)

We are told:

\(\displaystyle ell=2w\)

Hence:

\(\displaystyle V=w(2w)\frac{1}{3}=\frac{2w^2}{3}\)

Ad we know:

\(\displaystyle V=8\cdot27\)

Thus:

\(\displaystyle \frac{2w^2}{3}=8\cdot27\)

Solve for \(w\).

\(\displaystyle V=w\ell\frac{1}{3}\)

We are told:

\(\displaystyle ell=2w\)

Hence:

\(\displaystyle V=w(2w)\frac{1}{3}=\frac{2w^2}{3}\)

Ad we know:

\(\displaystyle V=8\cdot27\)

Thus:

\(\displaystyle \frac{2w^2}{3}=8\cdot27\)

Solve for \(w\).

2. Where did 1/3 come from?

I understand why you multiplied 8 by 27.

\(\displaystyle \frac{2w^2}{3}=8\cdot27\)

\(\displaystyle w^2=2^2\cdot3^4\implies w=2\cdot3^2=18\quad\checkmark\)

\(\displaystyle w^2=2^2\cdot3^4\implies w=2\cdot3^2=18\quad\checkmark\)

Likes:
harpazo and anemone