Challenge Simplify a sum

anemone

Paris la ville de l'amour
Staff member
Administrator
Moderator
Math Helper
Jan 28, 2018
181
219
43
Simplify \(\displaystyle \tan x \cos 1 ^\circ + \sin 1^\circ\).
 
  • Like
Reactions: MarkFL

MarkFL

La Villa Strangiato
Staff member
Administrator
Moderator
Math Helper
Jan 25, 2018
3,487
4,264
113
St. Augustine
I would write:

\(\displaystyle \tan(x)\cos\left(1^{\circ}\right)+\sin\left(1^{\circ}\right)=\frac{\sin(x)\cos\left(1^{\circ}\right)+\cos(x)\sin\left(1^{\circ}\right)}{\cos(x)}\)

Applying the angle-sum identity for sine, we may write:

\(\displaystyle \tan(x)\cos\left(1^{\circ}\right)+\sin\left(1^{\circ}\right)=\frac{\sin\left(x+1^{\circ}\right)}{\cos(x)}\)
 
  • Like
Reactions: anemone

anemone

Paris la ville de l'amour
Staff member
Administrator
Moderator
Math Helper
Jan 28, 2018
181
219
43
Very good, Mark!

The following is the second part of the challenge:

Evaluate \(\displaystyle \prod_{x=0}^{89} (\tan x \cos 1 ^\circ + \sin 1^\circ) \)
 
Last edited:
  • Like
Reactions: MarkFL

MarkFL

La Villa Strangiato
Staff member
Administrator
Moderator
Math Helper
Jan 25, 2018
3,487
4,264
113
St. Augustine
If we use a co-function identity, then the product \(P\) may be written:

\(\displaystyle P=\prod_{x=0}^{89}\left(\frac{\cos\left((89-x)^{\circ})\right)}{\cos(x^{\circ})}\right)=1\)
 
  • Like
Reactions: anemone

anemone

Paris la ville de l'amour
Staff member
Administrator
Moderator
Math Helper
Jan 28, 2018
181
219
43
Beautiful! Thanks for participating, Mark!
 
  • Like
Reactions: MarkFL