Practice Solve A_x

MarkFL

La Villa Strangiato
Staff member
Administrator
Moderator
Math Helper
Jan 25, 2018
3,463
4,254
113
St. Augustine
#2
\(\displaystyle A_x=A^2-A_y\)
 
Likes: harpazo

TheJason

Administrator
Staff member
Administrator
Moderator
Jan 25, 2018
2,502
532
113
www.facebook.com
#4
OK, working this out:

\(\displaystyle A = (A_{x} + A_{y})^{1/2}\)

\(\displaystyle A^{2} = ((A_{x} + A_{y})^{1/2})^{2}\)

\(\displaystyle A^{2} = A_{x} + A_{y}\)

\(\displaystyle 0 = A_{x} + A_{y} - A^{2}\)

\(\displaystyle -A_{x} = A_{y} - A^{2}\)

\(\displaystyle A_{x} = -A_{y} + A^{2}\)

rewritten

\(\displaystyle A_{x} = A^{2} - A_{y}\)
 
Likes: harpazo

harpazo

Pure Mathematics
Banned
Mar 20, 2018
5,857
361
83
NYC
#5
OK, working this out:

\(\displaystyle A = (A_{x} + A_{y})^{1/2}\)

\(\displaystyle A^{2} = ((A_{x} + A_{y})^{1/2})^{2}\)

\(\displaystyle A^{2} = A_{x} + A_{y}\)

\(\displaystyle 0 = A_{x} + A_{y} - A^{2}\)

\(\displaystyle -A_{x} = A_{y} - A^{2}\)

\(\displaystyle A_{x} = -A_{y} + A^{2}\)

rewritten

\(\displaystyle A_{x} = A^{2} - A_{y}\)
Good job!